Search for Variation information by Variation ID:

Please input a variation ID (e.g., vg0722097923 , STR0500036000 ).

Detailed information for vg1004059501:

Variant ID: vg1004059501 (JBrowse)Variation Type: INDEL
Chromosome: chr10Position: 4059501
Reference Allele: GGCCAAlternative Allele: AGCCA,G
Primary Allele: GGCCASecondary Allele: AGCCA

Inferred Ancestral Allele: Not determined.

Flanking Sequence (100 bp) in Reference Genome:


TGAGTTAGGAAAGCTAGCTAGAAAAAACTCAGCATAACAAGCTCGGCAAACTCGCCACCATGCTACTGCTCCCGGTAAATCCATGTGACATCTCCCACAC[GGCCA/AGCCA,G]
CACCTTTGCCTTGTCTGCTTCGTTGTGCGCTATGCGTCCACGCTGCGGCCATGCGCCGAGCTCTTATCCGGCTCGCCTGCTCGCGCGGTCGCGCCCCGCT

Reverse complement sequence

AGCGGGGCGCGACCGCGCGAGCAGGCGAGCCGGATAAGAGCTCGGCGCATGGCCGCAGCGTGGACGCATAGCGCACAACGAAGCAGACAAGGCAAAGGTG[TGGCC/TGGCT,C]
GTGTGGGAGATGTCACATGGATTTACCGGGAGCAGTAGCATGGTGGCGAGTTTGCCGAGCTTGTTATGCTGAGTTTTTTCTAGCTAGCTTTCCTAACTCA

Allele Frequencies:

Populations Population SizeFrequency of GGCCA(primary allele) Frequency of AGCCA(secondary allele) Frequency of N Frequency of DEL Frequency of others Allele
All  4726 79.30% 18.30% 0.23% 2.18% G: 0.04%
All Indica  2759 67.60% 30.60% 0.36% 1.38% G: 0.07%
All Japonica  1512 97.00% 0.30% 0.07% 2.65% NA
Aus  269 91.40% 0.00% 0.00% 8.55% NA
Indica I  595 69.60% 30.10% 0.17% 0.17% NA
Indica II  465 69.90% 29.20% 0.00% 0.86% NA
Indica III  913 66.70% 29.80% 0.66% 2.74% G: 0.11%
Indica Intermediate  786 65.60% 32.80% 0.38% 1.02% G: 0.13%
Temperate Japonica  767 99.10% 0.10% 0.00% 0.78% NA
Tropical Japonica  504 98.40% 0.20% 0.00% 1.39% NA
Japonica Intermediate  241 87.10% 1.20% 0.41% 11.20% NA
VI/Aromatic  96 100.00% 0.00% 0.00% 0.00% NA
Intermediate  90 83.30% 14.40% 0.00% 2.22% NA

Allele Effect:

Var ID Var Locus snpEff Annotation CooVar Annotation Chromatin Accessibility Score PolyPhen-2 Effect PolyPhen-2 Score SIFT Effect SIFT Score
vg1004059501 GGCCA -> AGCCA LOC_Os10g07548.1 upstream_gene_variant ; 3809.0bp to feature; MODIFIER silent_mutation Average:90.002; most accessible tissue: Minghui63 root, score: 95.552 N N N N
vg1004059501 GGCCA -> AGCCA LOC_Os10g07552.1 upstream_gene_variant ; 3396.0bp to feature; MODIFIER silent_mutation Average:90.002; most accessible tissue: Minghui63 root, score: 95.552 N N N N
vg1004059501 GGCCA -> AGCCA LOC_Os10g07548-LOC_Os10g07552 intergenic_region ; MODIFIER silent_mutation Average:90.002; most accessible tissue: Minghui63 root, score: 95.552 N N N N
vg1004059501 GGCCA -> G LOC_Os10g07548.1 upstream_gene_variant ; 3810.0bp to feature; MODIFIER silent_mutation Average:90.002; most accessible tissue: Minghui63 root, score: 95.552 N N N N
vg1004059501 GGCCA -> G LOC_Os10g07552.1 upstream_gene_variant ; 3395.0bp to feature; MODIFIER silent_mutation Average:90.002; most accessible tissue: Minghui63 root, score: 95.552 N N N N
vg1004059501 GGCCA -> G LOC_Os10g07548-LOC_Os10g07552 intergenic_region ; MODIFIER silent_mutation Average:90.002; most accessible tissue: Minghui63 root, score: 95.552 N N N N
vg1004059501 GGCCA -> DEL N N silent_mutation Average:90.002; most accessible tissue: Minghui63 root, score: 95.552 N N N N

Effects Predicted by Deep Convolutional Neural Networks

For each variant, we constructed two sequences that contain the variation site and the sequence around it, differing only in the variation site. We then used Basenji to predict the chromatin accessibility of each tissue for the two sequences, respectively, and scored the effect of the variant by comparing the changes in chromatin accessibility corresponding to the two genotypes in the 1 kb region around the variation site. The effect score was defined as the logarithmic ratio of the predicted chromatin accessibility of the alternative genotype to the value of the reference genotype.

Var ID Ref Alt Root (RT) Young Leaf (YL) Flag Leaf (FL) Young Panicle (YP) Lemma & Palea (LP) Stamen & Pistil (SP)
vg1004059501 GGCCA AGCCA -0.11 -0.04 -0.02 0.04 -0.02 -0.05
vg1004059501 GGCCA G -0.25 -0.76 -0.58 -0.11 -0.19 -0.23

Putative Genotype-Phenotype Associations:

Var ID LMM P-value LR P-value Trait Subpopulation Is leadSNP Publication
vg1004059501 9.18E-06 NA mr1084_2 All Not Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 1.24E-06 NA mr1115_2 All YES Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 9.24E-06 5.11E-06 mr1206_2 All YES Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 9.81E-07 NA mr1270_2 All YES Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 3.50E-06 NA mr1316_2 All YES Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 7.65E-06 2.05E-06 mr1555_2 All Not Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 NA 1.17E-06 mr1603_2 All Not Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 1.63E-07 NA mr1611_2 All YES Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 6.04E-06 NA mr1762_2 All Not Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 NA 3.06E-06 mr1763_2 All Not Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 3.98E-06 NA mr1771_2 All YES Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251
vg1004059501 2.24E-06 NA mr1784_2 All YES Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat Genet, 46(7):714-21, PMID:24908251